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Abstract 1 

Human impacts increasingly affect the global hydrological cycle and indeed dominate 2 

hydrological changes in some regions. Hydrologists have sought to identify the human-impact-3 

induced hydrological variations via parameterizing anthropogenic water uses in global 4 

hydrological models (GHMs). The consequently increased model complexity is likely to 5 

introduce additional uncertainty among GHMs. Here, using four GHMs, between-model 6 

uncertainties are quantified in terms of the ratio of signal to noise (SNR) for average river flow 7 

during 1971-2000 simulated in two experiments, with representation of human impacts 8 

(VARSOC) and without (NOSOC). It is the first quantitative investigation of between-model 9 

uncertainty resulted from the inclusion of human impact parameterizations. Results show that 10 

the between-model uncertainties in terms of SNRs in the VARSOC annual flow are larger 11 

(about 2% for global and varied magnitude for different basins) than those in the NOSOC, 12 

which are particularly significant in most areas of Asia and northern areas to the Mediterranean 13 

Sea. The SNR differences are mostly negative (-20% to 5%, indicating higher uncertainty) for 14 

basin-averaged annual flow. The VARSOC high flow shows slightly lower uncertainties than 15 

NOSOC simulations, with SNR differences mostly ranging from -20% to 20%. The uncertainty 16 

differences between the two experiments are significantly related to the fraction of irrigation 17 

areas of basins. The large additional uncertainties in VARSOC simulations introduced by the 18 

inclusion of parameterizations of human impacts raise the urgent need of GHMs development 19 

regarding a better understanding of human impacts. Differences in the parameterizations of 20 

irrigation, reservoir regulation and water withdrawals are discussed towards potential directions 21 

of improvements for future GHM development. We also discuss the advantages of statistical 22 

approaches to reduce the between-model uncertainties, and the importance of calibration of 23 

GHMs for not only better performances of historical simulations but also more robust and 24 

confidential future projections of hydrological changes under a changing environment. 25 

 26 

Keywords: Uncertainty; Global hydrological model; Human impact parameterizations; 27 

Multimodel approach;  28 

  29 
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1. Introduction 30 

Human activities have greatly affected the hydrological cycle [1, 2], whereas the 31 

simulation of human water uses and model uncertainties therein are still great challenges for 32 

global hydrological modeling [3]. Model simulations have shown that discharge has been 33 

increasingly disturbed by human water uses in the late 20th century [4]. In the recent decade, 34 

hydrologists have made large efforts to identify the human impacts on hydrological cycle under 35 

a changing environment [5-11]. The major human impacts (e.g. irrigation and reservoirs) have 36 

been more or less parameterized in many global hydrological models (GHMs) [12-18].  37 

However, large discrepancies among models result from the differences in model input, 38 

algorithms, parameters, etc. [3, 19]. The parameterizations of human impacts vary greatly 39 

across GHMs and thus possibly bring extra discrepancies among models. Hydrologists are 40 

aware of the uncertainties among GHMs and some intercomparison projects have been 41 

initialized to profile them. For example, the between-model uncertainties for naturalized 42 

simulations of GHMs have been investigated through the Water Model Intercomparison Project 43 

(WaterMIP) [20] and the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) Fast-44 

track [21, 22]. The human water uses such as irrigation are remarkable in some regions with 45 

intensive human impacts (e.g. western United States, China, and South Asia), and can induce 46 

considerable uncertainties in hydrological projections for the future [9, 23]. All these prior 47 

studies showed large discrepancies among GHMs in future hydrological projections, however, 48 

these uncertainties might result from numerous differences among GHMs, e.g., different input 49 

data and model algorithms, which makes it difficult to clarify the uncertainty sources. The 50 

ISIMIP phase 2 provides a framework for comparing and evaluating multiple GHMs based on 51 

consistent input data, e.g., meteorological forcings, human impacts (reservoirs and irrigation 52 

area), and drainage network for flow routing. In view of the potential influence of human 53 

impacts on the GHMs simulations, it is now possible to examine the changes of between-model 54 

uncertainty induced by the inclusion of human impacts in GHMs quantitatively, based on the 55 

ISIMIP2 simulation protocol. 56 

In this study, we use four GHMs to investigate the uncertainty changes in the simulations 57 

with and without human impact parameterizations. On this basis, we further provide discussions 58 
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on the differences in the parameterization of human impacts, which are associated with 59 

between-model uncertainties. This paper is organized as follows: description of models, 60 

experiments and methods are presented in Section 2; results are presented in Section 3; the 61 

implications of the results are discussed in Section 4 and a summary is presented in Section 5.  62 

 63 

2. Data and Methodology 64 

2.1. Models and experiments 65 

River flow simulations from four GHMs, i.e. DBH [24-26], H08 [12, 27], LPJmL [28, 29], 66 

and PCR-GLOBWB [30, 31], forced by four meteorological forcing data, namely Princeton 67 

[32], GSWP3 [33] (http://hydro.iis.u-tokyo.ac.jp/GSWP3/), WFDEI [34] and WATCH [35], for 68 

the historical period 1971-2000 are used in this study. A description of the models is given in 69 

Table S1. Two experiments were conducted for all GHMs and forcings: (1) simulations under 70 

natural condition without human impacts (i.e., naturalized simulations, refer to NOSOC) and 71 

(2) simulations with human impacts including irrigation and reservoir regulation, which is 72 

related to varied socioeconomic information (refer to VARSOC).  73 

2.2. Human impacts in GHMs 74 

In the experiment, human impacts are considered in terms of irrigation and reservoir 75 

regulation. Time-varying areas of both irrigated and rainfed cropland are represented as the 76 

combination of present-day (year 2000) areas of crop types from MIRCA2000 [36] and 77 

backward trends of agricultural land cover from HYDE [37]. The reservoir (dam) information 78 

is derived from the Global Reservoir and Dam (GRanD) Database [38], with the locations re-79 

arranged to half-degree grid cells based on the global drainage direction map (DDM30) [39]. 80 

The reservoirs are included or not for regulation according to the documented year of 81 

completion. Reservoirs and irrigation areas used in the experiment are shown in Figure S1. The 82 

river basin delineations defined by the DDM30 data [39] are used for analysis at basin scale. 83 

The parameterizations of human impacts in the four GHMs are summarized in Table S1 by 84 

referring to the relevant literature and Table 1 in Ref. [9] and [30], who have documented the 85 

human water uses in several state-of-the-art GHMs specifically including those used here.  86 
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2.3. Uncertainty measurement 87 

Streamflow simulations from the experiment with human impacts are compared with the 88 

observed station data from the Global Runoff Data Centre [40] to evaluate the performances of 89 

GHMs. Annual flow (AF) and highest monthly flow (HMF) for each year, and their means over 90 

the study period, i.e. mean annual flow (MAF) and mean highest monthly flow (MHMF) are 91 

computed. Relative errors between simulated and observed MAF and MHMF, and the 92 

correlation coefficients between simulated and observed AF and HMF are calculated for each 93 

station. The respective simulated streamflow is picked out from the global grids according to 94 

the latitudes and longitudes of stations. The stations (1235 in total) with record lengths of more 95 

than 20 years and catchment areas larger than 10,000 km2 are used for comparison (see Figure 96 

S2).  97 

The signal to noise ratio (SNR), defined as the mean divided by the standard deviation, is 98 

used as an indicator of uncertainty among the multimodel simulations. SNR is calculated for 99 

global and basin-averaged MAF and MHMF from model grid cells to address the uncertainty 100 

in the simulations with and without human impacts. SNR differences between the experiments 101 

with and without human impacts are interpreted as the change of uncertainty caused by the 102 

inclusion of human impacts in GHMs. Annual SNR is also computed for global AF and HMF 103 

for temporal change analysis during the 1971-2000 period. 104 

 105 

3. Results 106 

3.1. Evaluation of GHMs 107 

Figure 1 shows the observed MHMF (Figure 1a) and MAF (Figure 1b) versus the 108 

ensemble means of simulations across all GHM-forcing combinations. Both MHMF and MAF 109 

simulations show large deviations at many stations with relatively small catchment areas, while 110 

stations with large catchment areas tend to show little deviation. For the ensemble means, about 111 

10% of the stations show small relative errors of -10% to 10%, while more than 40% of stations 112 

show relative errors of -50% to 50% for both MHMF and MAF. For the ensemble of individual 113 

GHM, no more than 10% (15%) of stations show small relative errors of -10% to 10% for 114 

MHMF (MAF), and about 20% to 30% have relative errors of -50% to 50% for both MHMF 115 

Page 5 of 23 AUTHOR SUBMITTED MANUSCRIPT - ERL-103109.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



and MAF (see Table S2). The simulations of MAF show generally better performance than 116 

those of MHMF at most stations, but both of them seem to be overestimated at many stations.  117 

The correlation coefficients between the simulated and the observed HMF and AF are 118 

shown in Figure 1c. The correlation coefficients for AF are significantly larger than those for 119 

HMF. Nearly 70% (85%) stations have correlation coefficients greater than 0.6 for HMF (AF). 120 

The proportions are larger than those for individual models (see Table S3). This brief evaluation 121 

indicates that improvements of GHMs are necessary to capture river flows, particularly in small 122 

catchments, and ensemble means of multimodel simulations usually fit better to observations.  123 

 124 

Figure 1. Evaluation of the ensemble discharge means across all GHM-forcing combinations with GRDC 125 

observations: (a) ensemble means of simulated (MHMF_Sim) versus observed MHMF (MHMF_Obs), 126 

(b) ensemble means of simulated (MAF_Sim) versus observed MAF (MAF_Obs), (c) correlation 127 

between simulated and observed HMF (HMF_corr) versus correlation between simulated and observed 128 

AF (AF_corr). The colors of data points indicate the catchment areas of hydrological stations. 129 

 130 

3.2. Uncertainty assessment 131 

Figure 2 shows the SNRs for the experiment with human impacts and the SNR differences 132 
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between the experiments with and without human impacts for global HMF and AF. During the 133 

1971-2000 period, the all-ensemble SNR of global HMF ranges from 4 to 5, and SNR of global 134 

AF ranges from 4.5 to 5.5. SNRs show large spread among different meteorological forcings 135 

(see Figure 2a, c): the WATCH’s SNR is the smallest (~4 for HMF and 4.5-5 for AF) over the 136 

historical period; WFDEI’s SNR shows the same value as WATCH’s before 1979 (WFDEI and 137 

WATCH share the same data for this period) and then increases greatly to be the largest (~5.5 138 

for HMF and ~7.5 for AF) among those of the four forcings; the PGMF’s SNR and the 139 

GSWP3’s SNR are very close (5 – 5.5) for HMF, but the former (from 6.5 to 5.5) is slightly 140 

smaller than the latter (from 7.5 to 6.5) for AF. This indicates that the uncertainties in historical 141 

climate data bring large discrepancies to GHMs simulations, which agrees with previous studies 142 

[41]. 143 

The SNR for the simulations with human impacts is generally larger (smaller) than for the 144 

naturalized simulations regarding global HMF (AF). SNR differences for global HMF (Figure 145 

2b) increase over time, whereas the ensemble SNR difference ranges from 0.1 to 0.3 (2-6%); 146 

the WATCH’s SNR difference is the smallest, ranging from 0.1 to 0.2, while SNR differences 147 

for other forcings mostly range from 0.2 to 0.5, which show relative large interannual variations. 148 

SNR differences for global AF (Figure 2d) show considerable interannual variation. The all-149 

ensemble SNR difference ranges from -0.12 (2%) to zero; the WATCH’s SNR difference is also 150 

the smallest, and the other SNR differences mostly ranges from 0.05 to 0.15. 151 

 152 

Figure 2. SNRs for the simulations of global mean river flows from the experiment with human impacts 153 
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and the differences with respect to the experiments without human impacts. (a) and (c): SNR for global 154 

HMF and AF from the experiment with human impacts, respectively, (b) and (d): SNR differences for 155 

global HMF AF, respectively. The blue lines indicate the SNRs (or SNR differences) across the four 156 

GHMs and all forcings, while the other four color lines are SNRs across the four GHMs for the individual 157 

forcings (i.e., PGMF, GSWP3, WFDEI, and WATCH). 158 

 159 

Figure 3 shows the SNR differences between the simulations with and without human 160 

impacts for the basin averaged MHMF and MAF, respectively, over the 1971-2000 period. The 161 

SNR differences for HMF at basin scale shows many negative values (indicating larger 162 

uncertainties), e.g. some basins in Europe, North India, and South China (Figure 3a). There are 163 

generally small changes in the basins with a few reservoirs and irrigation areas, but considerable 164 

positive SNR differences (lower uncertainties) are found for the Yenisey and Lena basins. 165 

Lower uncertainties are also found in some major basins with great human impacts, such as the 166 

Liao River and Hai River of China, the Don River of Russia, the Amu Darya River in Central 167 

East, the Tigris-Euphrates River in West Asia, the Zambezi River in Africa, and the São 168 

Francisco River in South America. However, only a relatively weak relationship (with a 169 

correlation coefficient of 0.18) is found between the basin MHMF’s SNR difference and 170 

reservoir storage capacity, as shown in Figure 3c.  171 

SNRs for MAF simulations with human impacts are mostly smaller than naturalized 172 

simulations at basin scale. Large differences are observed in some major river basins with great 173 

human impacts, such as the Chang Jiang and Huang River basins of China, the Ganges, 174 

Godavari and Krishna Rivers of India, the Indus River of Pakistan, the Amu Darya River in 175 

Central East, the Tigris-Euphrates River in West Asia, and the Danube River in Europe. It 176 

indicates that uncertainty increases in MAF simulations with human impacts in these regions. 177 

Only a few positive SNR differences (lower uncertainty) are found, e.g. in the Hai and Liao 178 

River of China and the East Coast of Caspian Sea. The SNR differences for MAF are relatively 179 

well related to the basin irrigation area (correlation coefficient -0.41; Figure 3d), indicating that 180 

between-model uncertainty is higher for the basins with larger irrigation area. 181 
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 182 

Figure 3. SNR difference (VARSOC – NOSOC) for basin MHMF (a) and MAF (b) simulations. SNR is 183 

computed for the basin averages across all GHM-forcing combinations. Blue (red) color indicates that 184 

SNRs from experiment with human impacts are smaller (larger) than SNRs from naturalized experiments. 185 

That is, the blue color indicates higher uncertainty while red color indicates lower uncertainty. The inner 186 

plots show the SNR differences (in %) for basin averaged MHMF versus logarithm of reservoir storage 187 

capacity (c) and basin averaged MAF versus logarithm of irrigation areas (d), respectively. Basins with 188 

none reservoir or irrigation area are not included in the inner plots; SNR differences above or below three 189 

standard deviations are omitted. 190 

 191 

Figure 4 shows the ratios of the SNR of human-impact-induced MAF differences to the 192 

SNR of naturalized MAF at basin scale. The numerator is the SNR of MAF differences between 193 

the simulations with and without human impacts. The smaller the ratio is, the larger uncertainty 194 
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in human impact simulations is, and vice versa. The ratios are less than one (mostly < 0.5) for 195 

many basins (particularly those with numerous irrigation areas and reservoirs), that is, the SNR 196 

of human-impact-induced MAF differences are obviously smaller than the MAF SNRs (see 197 

Figure S3). The southern basins and the Hai River basin in China and many basins in Europe 198 

with intensive human activities show very small ratios that less than 0.2. Only several basins 199 

show large ratios greater than one, such as the Tarim Interior of China, the Volga of Russia, St 200 

Lawrence in North America, and the Shebelli–Juba and some northern basins in Africa where 201 

irrigation areas are small and reservoirs are few. It indicates that the human impact 202 

simulations—i.e., the human-impact-induced MAF differences—show larger uncertainties 203 

compared to the naturalized simulations in these regions. 204 

Unlike the SNR differences in Figure 3, the ratios in Figure 4 are very weakly related to 205 

both the fraction of irrigation area and reservoir storage capacity. Nevertheless, uncertainty in 206 

irrigation—as the largest human water use—perhaps plays a key role for the small SNRs. For 207 

example, the actual water withdrawal for irrigation (IRRWW) simulated by GHMs shows 208 

considerable differences and is significantly underestimated compared to reported data (see 209 

Figure S4).  210 

 211 

Figure 4. The ratios of SNR of human-impact-induced MAF differences (NOSOC - VARSOC) to SNR 212 

of naturalized MAF simulations. SNR_HI: the SNR of the MAF differences (NOSOC - VARSOC) 213 

between the simulations without and with human impacts at basin scale; SNR_NOSOC: the SNR of 214 

MAF simulations without human impacts at basin scale. 215 
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 216 

4. Discussion  217 

The simulated river flows show large deviations with overestimation at many hydrological 218 

stations compared to GRDC observations. This may be due to regional overestimation of runoff 219 

generation and the underestimation of anthropogenic water uses (e.g. see Figure S4) and soil 220 

water storage [42]. The between-model uncertainties are measured in terms of SNR, which are 221 

larger (a bit smaller) in the annual flow (high flow) simulations with human impacts than in the 222 

naturalized simulations. The differences of between-model uncertainty from the two 223 

experiments are relatively small (2-4%) at global scale but are more significant for some regions. 224 

Previous studies showed that human intervention (e.g. irrigation water withdrawal) largely 225 

altered regional water cycle [9, 43]. The human impacts are primarily represented by 226 

anthropogenic water uses (irrigation, industrial domestic, etc.) and reservoir regulation in the 227 

GHMs, which increase the model complexity with respect to model structure and parameters.  228 

The different model algorithms and various parameters should be responsible for the large 229 

between-model uncertainties [3]. The uncertainties due to the different responses of GHMs to 230 

climate input are beyond the scope of this paper. However, it is noted that the differences in 231 

naturalized simulations resulted from the different responses also will influence the simulation 232 

of human water uses (e.g., irrigation). Regarding to the simulations of human impacts, the 233 

severely lack of water uses data primarily in developing countries should be one of the major 234 

reasons leading to great deviations to observations and uncertainties among GHMs. Here, we 235 

focus on the differences of the between-model uncertainties between the experiments with and 236 

without human impacts, and the discussion of the potential major sources of the uncertainties 237 

associated with the different parameterizations of human impacts in GHMs.  238 

 239 

4.1. Uncertainties in irrigation simulations 240 

The simulation of irrigation, the largest anthropogenic water use, is likely to contribute to 241 

the discrepancies in the simulations of human impact by GHMs, as indicated by the relationship 242 

between the SNR difference and irrigation area (Figure 3d). Irrigation water demand is usually 243 

estimated as the difference of potential crop evapotranspiration and local available soil (green) 244 
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water. Therefore, uncertainties in IRRWW simulations are largely associated with the 245 

estimation of crop evapotranspiration, soil moisture, and irrigation efficiency. Though all four 246 

GHMs use the FAO Penman-Monteith equation to estimate the potential crop 247 

evapotranspiration, the simulated potential water withdrawal for irrigation can be significant 248 

different (see Figure S4c, d). The irrigation efficiency (the ratio of irrigation water use to the 249 

total water withdrawal) varies across the GHMs (see Table S1) and may significantly influence 250 

the estimation of potential and actual water withdrawal for irrigation. On the other hand, the 251 

implementations of water withdrawals in GHMs may be different in several aspects, which are 252 

partly responsible for the differences in IRRWW, such as the accessibility to available water for 253 

a grid cell, the proportion of withdrawal from river, reservoir and groundwater, and the 254 

allocation of the water supplies for different sectors from a reservoir. Hence, irrigation schemes 255 

and associated parameters need to be reconciled against the observed regional conditions to 256 

provide more consistent IRRWW simulations at both global and regional scales. 257 

 258 

4.2. Uncertainties in reservoir simulations 259 

Reservoir regulation scheme is critical in coupling human-induced and natural 260 

hydrological changes in GHM simulations. Human impacts on hydrological processes could be 261 

much more complex than the simulations in this study for they are associated with many 262 

socioeconomic factors. For instance, irrigation is linked to reservoir regulation and regional 263 

water allocation, while reservoir regulation rules are mostly defined by energy demand, flood 264 

control, various water supplies, and even the energy and food prices [44]. The role of reservoir 265 

regulation therein makes the simulation be relatively uncertain. Water losses due to evaporation 266 

are particularly significant for some small reservoirs [45], which may result in uncertainty in 267 

reservoir regulations since not all GHMs consider this process (Table S1). 268 

The different reservoir regulation schemes inevitably bring uncertainties to river flow 269 

simulations. Though the GHMs more or less take the reference of [46] or [47] in their reservoir 270 

regulation development, the adapted rules are still (perhaps largely) different [15, 48, 49]. The 271 

reservoir regulation may produce significantly different simulated hydrographs of the dammed 272 

rivers by the GHMs [50]. Nevertheless, the uncertainty differences for both annual flow and 273 

high flow are weakly related to the reservoir storage in this study. It is noted that the simulations 274 

Page 12 of 23AUTHOR SUBMITTED MANUSCRIPT - ERL-103109.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



of high flow are less discrepant among GHMs in some basins (Figure 3c) with large storage 275 

capacity of reservoirs (e.g. the Bratsk, Irkutsk reservoirs in the Yenisey basin and Vilyui 276 

reservoirs in the Lena basin) and small irrigation areas, where the reservoir regulation greatly 277 

determine the variations of downstream flow [51]. At global scale, the slightly higher 278 

consistency in the high flow simulations with human impacts perhaps results from the universal 279 

flood control rules in GHMs which are greatly associated with reservoir storage capacity and 280 

annual average inflows. 281 

 282 

4.3. Uncertainties in simulations of groundwater withdrawal 283 

Groundwater withdrawal is also a key source for to the IRRWW in some regions [52]. 284 

However, modeling of groundwater availability remains a challenge due to the complex 285 

interactions between surface water and groundwater [10, 53], and the large differences in the 286 

implementation of groundwater withdrawal give rise to significant discrepancies among GHMs 287 

[54]. The proportion of withdrawals from groundwater (Rgrd) is a key parameter associated with 288 

the groundwater withdrawal estimation. In current GHMs, due to insufficient historical data at 289 

global scale, the proportion of groundwater withdrawal is often estimated according to water 290 

use demand and surface water availability—in this case the amount of groundwater pumping 291 

was often unlimited [55]—or further constrained by estimated groundwater availability and 292 

historical groundwater pumping data [30, 56-58]. Leng et al. [59] showed that the calibrated 293 

Rgrd using historical census data could largely improve the simulation of irrigation amount in 294 

the USA (see their Fig. 3). The PCR-GLOBWB model limits the groundwater withdrawal 295 

according to its availability and the reported groundwater pumping data based on the 296 

International Groundwater Resources Assessment Centre, and obtains better performances in 297 

the simulations of groundwater withdrawal [30], although it may result in deviation in the 298 

IRRWW estimates in regions like India and Pakistan where groundwater pumping remains 299 

unreported in many parts. This studies suggested that Rgrd could be determined from historical 300 

data and is useful for improving the simulation of groundwater withdrawal, and thus reduce the 301 

uncertainty among GHMs. Besides, the uncertainties in estimated water use demand, surface 302 

water and groundwater availability will be propagated to the groundwater withdrawal 303 

estimation. The groundwater use efficiency usually was taken the same as the surface water, 304 
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but it was supposed to be higher [60]. Potential uncertainty resulted from this parameter needs 305 

further investigation. 306 

 307 

4.4. Potential of reducing uncertainties in multimodel simulations 308 

Validation and calibration of GHMs against historical observations would advance model 309 

development, and are perhaps a crucial means to refine the GHMs simulations and to narrow 310 

the spread therein [61, 62]. Regarding the large spread in the simulations of human water uses, 311 

validations of individual sectoral water uses or hydrological components are necessary to get 312 

access to more constrained and confident hydrological modelling. Though the robust 313 

hydrological response to climate change in GHMs during historical period would not 314 

necessarily imply good model performances—not necessarily narrow model spread either—in 315 

future projections, the historical credits of GHMs would benefit the assessment presented by 316 

the ranges of hydrological changes with higher confidence [3, 63]. 317 

On the other hand, to some degree, the discrepant GHMs simulations further call for 318 

multimodel assessment rather than that based on a single model [64]. Before one can achieve 319 

better performing and more consistent hydrological predictions by GHMs, advanced statistical 320 

tools may be useful to improve the projections from multimodel ensembles for the assessment 321 

of climate change impact. For example, the Bayesian model averaging scheme can be an 322 

effective tool to obtain hydrological projections with less between-model uncertainties by 323 

weighting the individual model prediction with their likelihood measures [64].  324 

Modeling of the dynamics of human water uses is still a great challenge since sectoral 325 

water use efficiencies are kept changing (improving) in the wake of technological developments 326 

and management changes. Döll et al. [3] pointed out that the major challenges in modeling 327 

human water uses in GHMs come from input data, model algorithms, scaling issues, and etc. 328 

(see their Table 1). Particularly, more data of human water uses are urgently needed to further 329 

understand the human disturbances on hydrological cycle and therefore to derive better 330 

descriptions of them in terms of mathematical models. We noted that capturing the linkages 331 

between sectors in terms of water use would also be a major challenge. Two-way coupling of 332 

human water uses at different scales as well as the natural hydrological processes in GHMs is 333 

perhaps necessary to mimic the connected and competitive water uses among sectors. Therefore, 334 
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full representation of human impacts in global hydrological modeling under climate change 335 

raises the request of dynamically coupling the so-called nexus of climate-water-energy-food 336 

[65, 66]. This would be more essential for future projections of water resources and uses with 337 

regard of various socioeconomic scenarios [31, 67].  338 

 339 

5. Conclusions 340 

Global river flows simulated by four GHMs are validated and the between-model 341 

uncertainties in terms of SNR are investigated with respect to the inclusion of human impacts 342 

in the GHMs. The GHMs show relatively poor performances with considerable between-model 343 

uncertainties in the simulations of annual (AF) and high flow (HMF). Main conclusions can be 344 

drawn as follows. 345 

(1) Over the historical period (1971-2000), the GHMs show limitations in modeling AF 346 

and HMF at many stations—particularly for those from small basins, while relatively better 347 

performance is observed at many large basins. The multimodel ensemble means fit better to 348 

observations than individual models. 349 

(2) With consideration of human impacts (irrigation and reservoirs in this paper), the 350 

between-model uncertainties of simulated annual flow are higher (~2% on average globally in 351 

terms of SNR) compared to those from naturalized simulations, but are lower (2~4% globally) 352 

for the simulated high flow. The uncertainty differences are largest in most areas of Asia and 353 

northern countries of the Mediterranean Sea, and they appear to be significantly related to the 354 

fractional irrigation area of river basins. 355 

(3) The consistency of human impacts simulations between GHMs is much less 356 

pronounced than in the naturalized simulations, probably due to differences in the 357 

parameterizations of human impacts (especially the irrigation). 358 

The large uncertainties in human impact parameterizations put forward the need for further 359 

development of GHMs (not only for the models used in this paper) to reduce between-model 360 

uncertainties associated with irrigation and reservoir regulation. It is the first quantitative 361 

investigation of between-model uncertainty resulting from the inclusion of human impact 362 

parameterizations, and the quantitative method may be used to examine uncertainty caused by 363 
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other parameterizations in GHMs. In this study, we emphasize that calibration of GHMs 364 

including representations of the anthropogenic effects on the water cycle are essential for global 365 

hydrological modeling of a changing environment. Reconciliation of human water uses 366 

schemes and associated parameters in GHMs with global and regional observations would 367 

facilitate improvement of human impact parameterizations. Ensemble prediction approaches 368 

are promising tools for reducing uncertainty in model intercomparison projects, and would 369 

benefit future hydrological projections in assessment of climate change impact. 370 
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